### Bio-Medical Waste Management



## **Bio-Medical Waste definition**

- Any waste which is generated during
  - Diagnosis
  - Treatment
  - Immunization
- Hospital or Laboratory has to define policy for segregate and disposal of General waste.

## **Source of Biomedical Waste**

- Clinics
- Hospitals
- Medical laboratories
- Blood banks
- Mortuaries
- Medical research & training centers
- Animal houses etc.
- Such a waste can also be generated at home if health care is being provided there to a patient (e.g. injection, dressing material etc.)

| Cat.   | Type of Bag/<br>Container used                                                                                | TYPE OF WASTE                                                                                                                                                                                                                                                                | Treatment /Disposal<br>options                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Yellow | non-chlorinated<br>plastic bags<br>Separate collection<br>system leading to<br>effluent<br>treatment system ← | <ul> <li>a) Human Anatomical Waste</li> <li>b) Animal Anatomical Waste</li> <li>c) Soiled Waste</li> <li>d) Expired or Discarded Medicines</li> <li>e) Chemical Waste</li> <li>f) Micro, Bio-t and other clinical<br/>lab waste</li> <li>g) Chemical Liquid Waste</li> </ul> | Incineration or Plasma<br>Pyrolysis or deep burial*                                             |
| Red    | non-chlorinated<br>plastic bags or<br>containers                                                              | Contaminated Waste (Recyclable)<br>tubing, bottles, intravenous tubes<br>and<br>sets, catheters, urine bags, syringes<br>(without needles) and gloves.                                                                                                                       | Auto/ Micro/Hydro and<br>then sent for recycling. not<br>be sent to landfill                    |
| White  | (Translucent)<br>Puncture, Leak,<br>tamper proof<br>containers                                                | Waste sharps including Metals                                                                                                                                                                                                                                                | Auto or Dry Heat<br>Sterilization<br>followed by shredding or<br>mutilation or<br>encapsulation |
| Blue   | Cardboard boxes<br>with blue<br>colored marking                                                               | Glassware                                                                                                                                                                                                                                                                    | Disinfection or auto/<br>Micro/hydro and then<br>sent for recycling.                            |

### Chemical Reagent Discarded as Per MSDS

- What is MSDS (Material Safety Data Sheet)?
- MSDS Contain
  - Composition
  - Stability & Reaction
  - Transport , Handling & Storage information
  - Safety measures & Personal Protection
  - Safe disposal

#### For Example

Creatinine test reagent (R1 – NaOH & R2 Picric acid): Disposal of NaOH reagent

• Neutralize it with dilute acetic acid.

#### Which colour bag is for chemical discard ?

### How to handle mercury spillage?

- Wear rubber or latex gloves.
- Broken glass piece
  - Big glass with rubber brush & plastic supadi.
  - Small glass pick with forceps.
- Put in paper towel
- Fold it & place in zip locking bag.(label it)
- Use a rubber brush and Eye dropper to gather mercury beads.
- Squeeze mercury onto damp paper.
- Place it in a zip locking bag.(label it)
- Gloves used during process also sent with bag.



### Handling of Needle and Syringe

- Do not recap the needle to avoid needle prick injury.
- Dispose needle into white puncture proof container.
- Container should be filled with 1% Hypochloride solution.
- It should be leak proof and tightly packed.
- When container is **2/3** filled with needle ,change it with new container.
- It should be change at every 48 hours.







### How to make 1% HOCI solution

N1V1 = N2V2 5% V1 = 1%  $\times$  1000 ml V1 = 1%  $\times$  1000 5% = 200 ml

### **Liquid Chemical Waste**

- Waste Tank of Instrument generate liquid Biomedical Waste
  - Fully Automated Haematology
  - Fully Automated Biochemistry Analyzer
  - Fully Automated Immunoanalyzer Analyzer
- Should be pre-treated with 1% hypochloride for 30 minutes

#### • Example

Haematology Instrument generated 5 litre (5000 ml) waste

#### Formula to Prepare 1% Hypochloride from 5% Hypochloride

4 part water (waste) = 1 part hypochloride

5000 ml waste = ????????????

Hypochloride Volume = 1 \* 5000 / 4 = 1250 ml = 1.25 Litre

#### 1250 ml , 5% hypochloride + 5 litre (5000 ml) waste and keep it for 30 minutes

# Prepare 0.5 mmol/L HCL from Conc.HCL (Use Below Detail)

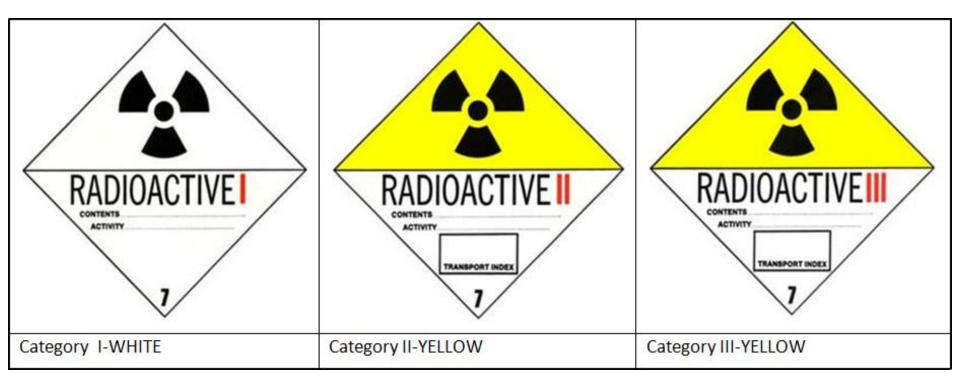
- Specific Gr-1.018
- Conc.-38%
- Volume -100ml

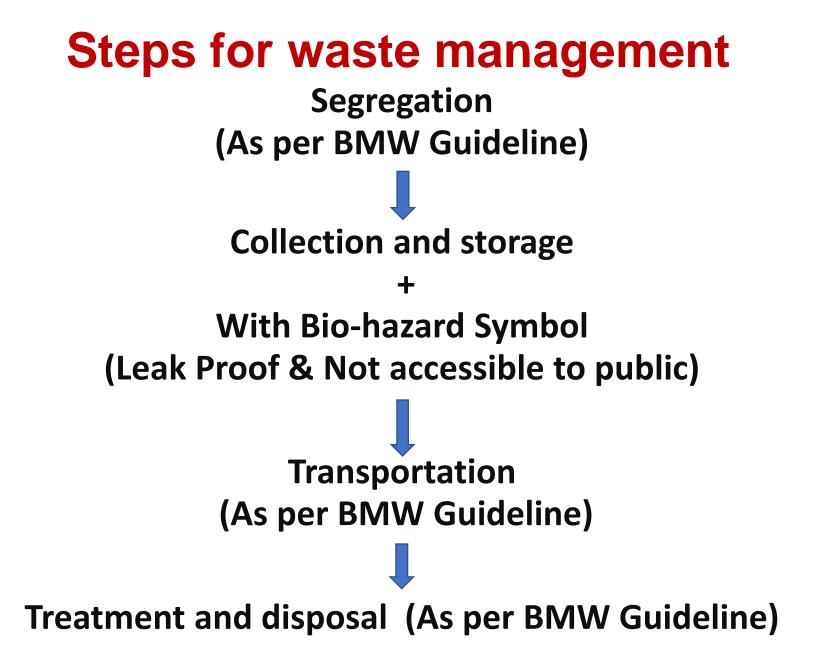
| Category       | Waste category<br>(type)                                          |
|----------------|-------------------------------------------------------------------|
| Category No. 1 | Human Anatomical<br>Waste                                         |
| Category No. 2 | Animal waste                                                      |
| Category No. 3 | Microbiology &<br>Biotechnology Waste &<br>their laboratory waste |
| Category No. 4 | Waste Sharps                                                      |

| Category       | Waste category<br>(type)                                                                       |  |
|----------------|------------------------------------------------------------------------------------------------|--|
| Category No. 5 | Discarded Medicine &<br>Cytotoxic drugs                                                        |  |
| Category No. 6 | Soiled waste                                                                                   |  |
| Category No. 7 | Infectious solid waste<br>(such as catheters, hand<br>gloves, tubings, saline<br>bottles etc.) |  |
| Category No. 8 | Chemical Waste<br>(disinfection,<br>insecticides etc.)                                         |  |

### **Radioactive waste**

#### Source


- Drugs (cancerous drugs)
- Dyes (lodine & Barrium)
- Diagnostic kits (RIA)
- Excreta from patient treated with radionuclide substance.
- This type of waste has a low level radioactivity.


#### PACKAGING

 1.WHITE I-Almost no radiation max. 0.5 mrem/hr on package surface.
 2.Yellow II-low level radiation max.50 mrem/hr on package surface.
 3.Yellow III-high level radiation max.200 mrem/hr on packag surface.

#### **Disposal management**

- For disposal of radioactive waste in hospital **yellow II** type bag is used.
- Low level radioactive waste can be sent for landfill.
- Low level waste can be stored in depth sea until the radioactivity fallen to safe level.



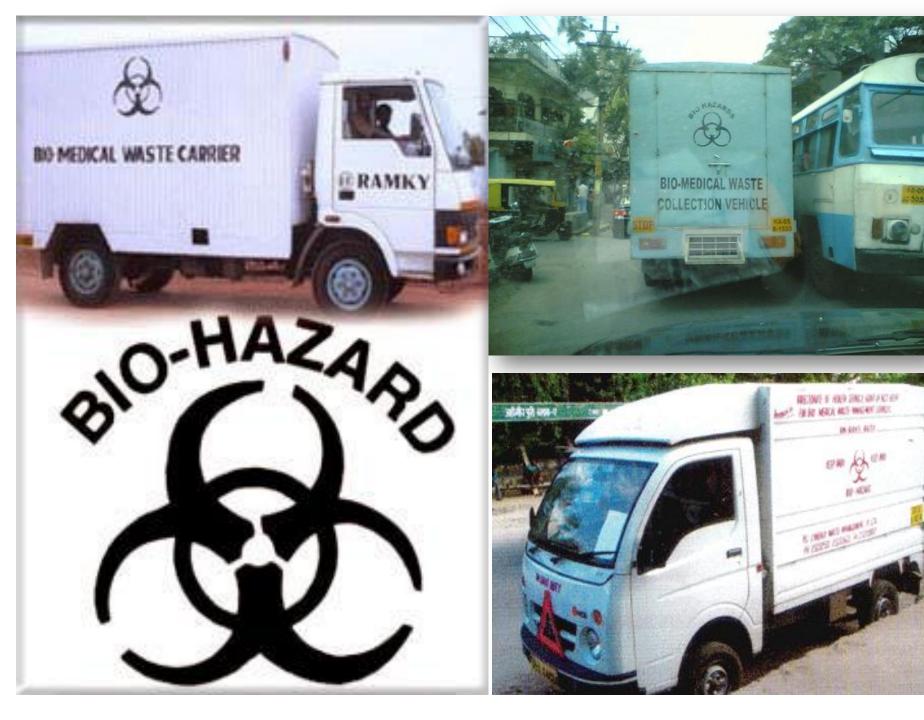


#### **TRANSPORTATION AND STORAGE**

- Temporary stored at the central storage area of the hospital
- Than sent in bulk to the site of final disposal once or twice a day depending upon the quantity of waste.
- Point to Care During transportation
  - Every bag must have "Bio Hazard Symbol"
  - Kept at Separate area (not accessible to unauthorized public )
  - Properly sealed and labeled.
  - Bags should not be filled completely
  - Bags can be picked up by the neck again
  - Hand should not be put under the bag.
  - At a time only one bag should be lifted.
  - Manual handling of waste bags should be minimized
  - BMW shall not be kept stored for more than 48 hours







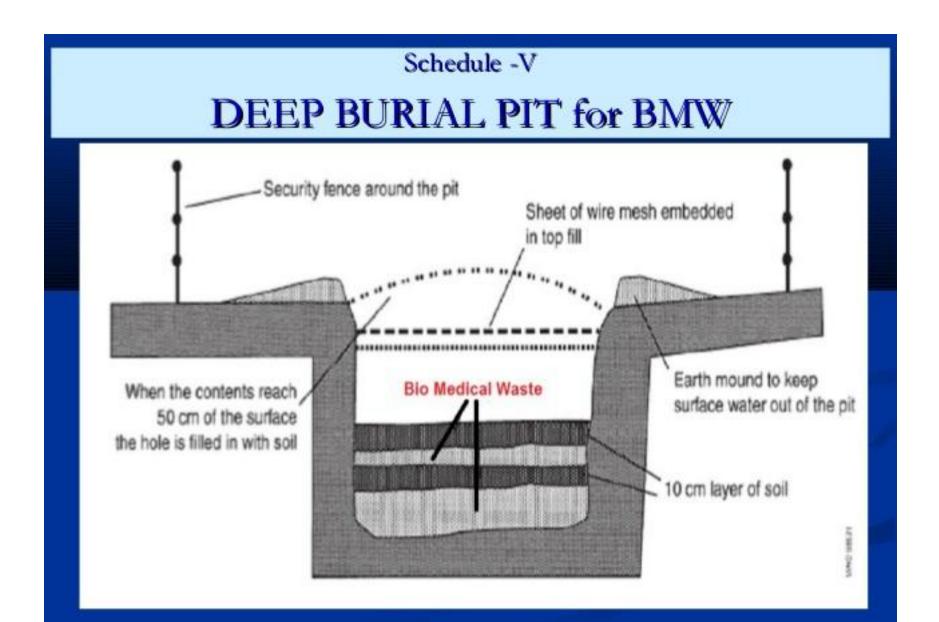

#### TRANSPORT TO FINAL DISPOSAL SITE

- From health care establishment to the site of final disposal In a closed motor vehicle (truck, tractor-trolley etc.)
- prevents spillage of waste on the way.
- Vehicles used for transport of BMW must have the "Bio-Hazard" symbol
- These vehicles should not be used for any other purpose.
   Note: Label shall be non-washable & prominently visible.








### Label for Transporting BMW bags

- 1. Date of Transport
- 2. Date of Waste generation
- 3. Waste category No
- 4. Waste quantity
- 5. Sender's Name & Address
- 6. Phone of Contact Person
- 7. In case of Emergency contact number of Sender:
- 8. Receiver's Name & Address
- 9. Phone number of Receiver

### Final treatment( on site)

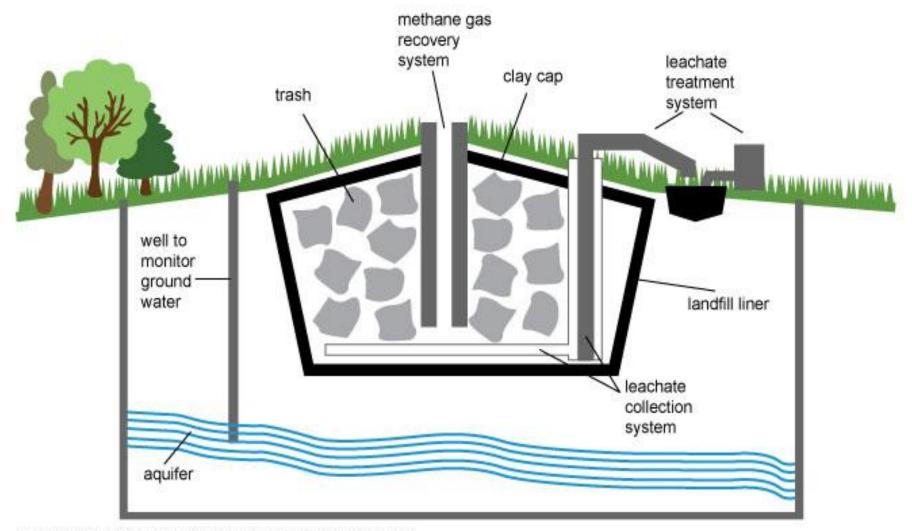
#### • Deep burial:

- Category 1 and 2 only
- In cities having less than 5 lakh population & rural area.
- In the deep burial ,pit depth is 2 meter.
- Burial site secured with covers of wire mash.
- After every burial in the same secured pit a layer of 10 cm. soil should be added.
- There should be no well, river, lake close to the site.(300meter)



### •Shredding:

- Only after chemical treatment/autoclaving.
- The plastic (I.V. bottles, I.V. sets, syringes, catheters etc.), sharps (needles, blades, glass etc)
- Needle destroyers can be used for disposal of needles directly without chemical treatment.


### •Land disposal:

- Pre treatment is optional.
- Secured/Sanitary landfill
- Incinerator ash, discarded medicines, cytotoxic substances and solid chemical waste .

### **Sanitary landfill Process**

- Digging a large pit in ground.
- There must be at least 3 m gap between ground water and landfill.
- Site should be 250 meter away from river , stream.
- Lined it with plastic layer (2-4 feet) or clay.
- For the collection of leachates plumbing of pipe at the bottom.

#### Modern landfill



Source: Adapted from National Energy Education Development Project (public domain)

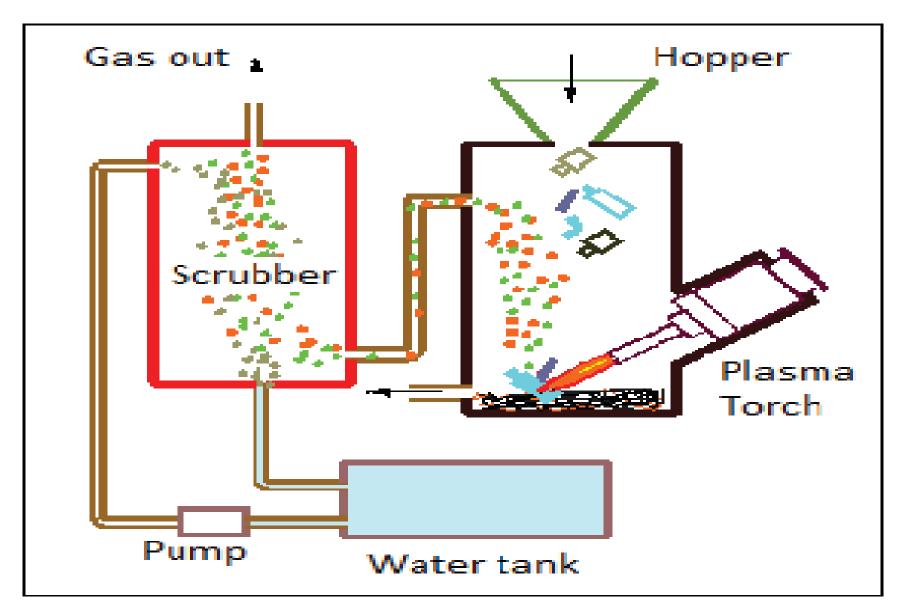
### Incineration

- Category 1, 2, 3, 5, and 6 can be incinerated.
- high temperature(110-850 C) dry oxidation process.
- Convert organic combustible waste to inorganic incombustible
- Generate Ash ,flue gas and heat.
- Used for the waste that can not be reused, recycled or disposed in landfill site.
- For this process certificate require from CPCB/State Pollution Control Board

### Incinerator



# Plasma Pyrolysis


#### What is plasma ?

- •Commonly 3 state liquid, solid & gas.
- Plasma is the fourth state of matter made of electric conductivity or electro-magnetic field.
- Every state changes due to HEAT
  - •From Solid >>> Liquid >>> Gas >> Plasma
  - Plasma = (lons + Atoms + Electrone)

### **Plasma Torch**

- Plasma torch
  - Instrument which generate plasma
- Principle of Plasma Torch
  - Gas such as oxygen, nitrogen ,argon is forced through small orifice inside the torch.
  - An electrical current from external power supply is then introduced in that gas flow,
  - Which generate
    - heat of temp. up to 40000 F.
    - Electric conductivity
    - Electromagnetic field
  - This all three are consider as "Plasma"
  - This Plasma come out from small orifice of the torch
  - And through on object for wielding , decontamination , cutting etc.

### **Plasma pyrolysis Principle**



