Molecular Chemistry

Dr Piyush Tailor

Associate Proffesor

Department of Biochemistry

GMC, Surat

"Central dogma" Of Molecular Biology

- Each cell is specialized, expressing only those functions that are required for it to perform.
- DNA replicate and express only precise information.

STRUCTURE OF NUCLEOTIDES

Purines

Adenine (A) DNA RNA

Guanine (G) DNA RNA

Pyrimidines

Cytosine (C) DNA RNA

Thymine (T) DNA

Uracil (U) RNA

Purines

Adenine (A) DNA RNA

Guanine (G) DNA RNA

Modified Purine

Hypoxanthine

Xanthine

Pyrimidines

Modified Pyrimidine

To which molecule is it similar?

$$H_3C$$
 N
 CH_3
 CH_3

CAFFEINE

Allopurinol

- Which organ or cell has more concentration of Adenosine deaminase?
- What is diagnostic important of ADA?

Dr Piyush Tailor

What can be effect of Adenosine deaminase deficiency

- What get accumulate & deficient?
 - Substrate or Product ?

What can happen to reaction if two structurally similar substrate come to enzyme?

Dr Piyush Tailor

What can happen to reaction if two structurally similar substrate come to enzyme?

Gar (Hostel)-Kam

- Name a condition which can happen due to increase serum uric acid level (**Hyperuricemia**).
- What is difference between uric acid and urate crystal?
- Which part of body especially get affected due to hyperuricemia?
- What type of food ingestion can cause hyperuricemia?
- Which type of condition can increase purine degradation and increase serum uric acid level?
- Which type of condition can decrease excretion of uric acid, which makes increase serum uric acid level?
- What is role of Allopurinol to correct hyperuricemia?

What can theophylline do with following reaction?

$$H_3C$$
 N
 CH_3

THEOPHYLLINE

ATP

CAFFEINE

CAMP

NUCLEIC ACID

What can theophylline do with following reaction?

$$H_3C$$
 N
 CH_3

THEOPHYLLINE

ATP

CAFFEINE

CAMP

Digetion of Nucleic acid

- Pancreatic & Intestinal Juice contain
 - Ribonuclease , Deoxyribonuclease
- Nucleotidase liberate phosphate from nucleotides.
- Resulting nucleoside are hydrolysed by nucleosidase forming free nitrogen base & pentose sugar.
- Dietary nitrogen base are never utilized for nucleic acid synthesis.
- They directly catabolised.

NUCLEIC ACID

Phosphodiester bonds

- Phosphodiester bonds join the 3'-OH group of the deoxypentose of one nucleotide to the 5'-OH group of the deoxypentose of an adjacent nucleotide through a phosphate group
- The resulting unbranched chain with two ends.
- 5'-end (the end with the free phosphate) and 3'-end (the end with the free hydroxyl)
- Ends are not attached to other nucleotides.

Nucleotide sequence of DNA read in $5' \rightarrow 3'$ direction.

DNA double helix

- Look like "twisted ladder".
- Outside = Hydrophilic = Deoxyribose-phosphate.
- Inside = Hydrophobic = Nitrogen Bases .
- Between the two strands in the helix major (wide) and minor (narrow) groove.
- These grooves provide
 - access for the binding of regulatory proteins to their specific recognition sequences along the DNA chain.
 - Anticancer drugs = Dactinomycin (Actinomycin D)
 - interact into the narrow groove of the DNA double helix
 - Thus inhibit with DNA replication and RNA synthesis.

Double-stranded DNA Major groove Minor groove "B" DNA

What can be effect this protein binding to replicating DNA?

DNA = Watson-Crick Model

- Right handed Double helix
 - Hydrogen bonding between nitrogenous bases
 - Base pairs (A with T & C with G)
 - Complementary strands
 - Antiparallel
- Composed of a sugar- phosphate backbone
- Sugar is deoxyribose
- Each Spiral = 3.4 nm & 10 Base pairs
- Diameter of helix = 1.9 2.0 nm
- Two type of groow = Major & Minor
- Chargaff Rule
 - No. of Adenine is equal to No. of Thymine
 - No. of Guanine is equal to No.of Cytosine

Type of DNA

Туре	Shape	Helix	Base pairs per Turn	Width	Base angle
A	Broad	Right Handed	11	2.3 nm	20 Degree tilt from perpendicular line
В	Inter- mediate	Right Handed	10	1.9 nm	Perpendicular
Z	Elongate d	Left Handed	12	1.8 nm	

Nuclear DNA

- Present in almost every cell
- Nuclear DNA is larger in size

Mitochondrial DNA

- Each cell contains thousands of mt,
- Mt DNA is in larger quantities in a cell

Dr Piyush Tailor

Mt DNA = 16,569 bases in length

- It's Code for
 - 13 proteins of respiratory chain
 - 22tRNAs,
 - 2rRNAs needed for cell respiration
 - This region has very little variability
 - So everyone's DNA in this region will be nearly the same sequence of TGCAs
- 5 10 times high mutation rate than nuclear

Mt DNA is inherited from mom

- Every sibling will get their mt DNA from their mother
- Why?
- During fertilization, When egg and sperm join, only female mitochondria survive. So Mother mitochondrial DNA are passed onto to new baby.

Why Mother?

- Egg contains
 - > 23 chromosomes
 - cell cytoplasm which contains thousands of maternal mitochondria.
- Sperm contains
 - > 23 chromosomes
 - very little cytoplasm

Mitochondrial Disease

- Mitochondrial myopathy
- Leber's hereditary optic neuropathy
- Leigh syndrome,
- Neuropathy
- Ataxia
- Retinitis pigmentosa
- Myoneurogenic gastrointestinal encephalopathy
- Myoclonic Epilepsy with Ragged Red Fibers Mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like symptoms (MELAS)
- mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)

Denaturation of DNA

Double-stranded DNA

Strand separation and formation of single-stranded random coils

Extremes in pH or high temperature **A-T** rich regions denature first

Cooperative unwinding of the DNA strands

Tm for DNA Denaturation

Intron ,Exon & Cistron

- Only 10% of the human DNA contain gene
- **Exon**
- Segments of gene coding for protein. (Expressed region)
- Nonfunctional (Not Expressed for Protein)
- Interspaced in the DNA with silent areas.
- Serve as basis for future genes.
- For evolution of new genes
- Cistron
- The unit of genetic expression
- One Cistron will code for one polypeptide chain.

$$total = 400 bp; exon = 400 bp$$

total =
$$1,660$$
 bp; exons = 990 bp

$$total = 42,830 bp; exons = 1263 bp$$

total =
$$\sim$$
186,000 bp; exons = \sim 9,000 bp

Human genome

- >~3 X 10⁹ bp of DNA
- >30,000 to 40,000 genes
- > Any Genes can have 1 to >75 exons
- > Genes can be = in length from <100 to
- >2,300,000 bp

Mitochondrial genome

- ➤ Circular genome of ~17,000 bp
- ➤ Contains < 40 genes</p>

Condesation of DNA

Dr Piyush Tailor

Mathematic behind Condensation

- Human genome (in diploid cells) = 6×10^9 bp
- 6×10^9 bp X 0.34 nm/bp = 2.04×10^9 nm = 2 m/cell
- Very thin (2.0 nm), Extremely fragile
- Diameter of nucleus = 5-10 mm
- DNA must be packaged to protect it,
- But it must still be accessible to allow gene expression and cellular responsiveness

HISTONES

- Main packaging proteins
- 5 classes: H1, H2A, H2B, H3, H4.
- Rich in Lysine and Arginine
- DNA wraps around it 1 3/4 times for a 7-fold condensation factor.

Nucleosome

octamer of core histones: H2A, H2B, H3, H4 (each one ×2)

Nucleosome H₂B H2A 5.7 nm **H1 H3** 11 nm

Chromatin fibril

Beads-ona-string form of chromatin

Ir Fiyush Tailor

Beads on a String—10 nm Fiber

10 nm Fiber

• A string of nucleosomes is seen under EM as a 10 nm fiber

30 nm Chromatin Fibril

• 30 nm fiber is coil of nucleosomes with 6/turn

The 30 nm Fiber (Compacts DNA 7X more)

a solenoid

Different forms of chromatin show differential gene activity

Euchromatin (E) vs Heterochromatin (H)

DNase

Heterochromatin = More condensed =(tightly packed) = Resistant to DNase digestion.

nascent transcripts

Transcriptionally active DNA (an active gene) is in <u>euchromatin</u>.

Histones (H1, H2A, H2B, H3, H4)

- Small nucleio-proteins
- > Arginine or Lysine rich: positively charged
- > Interact with negatively (due to phosphate) charged DNA
- > Following modification decrease positive charge of DNA
 - √ Phosphorylation
 - √Poly(ADP) ribosylation
 - ✓ Methylation
 - ✓ Acetylation
 - Hypoacetylation
 associate with transcriptional repression
 - Hyperacetylation
 associate with transcriptional activation

- **Modified Nucleiotide & it's significant.**
- **DNA** replication is semi-conservative.

Dr Piyush Tailor

Gar (Hostel)-Kam

- Name a condition which can happen due to increase serum uric acid level (**Hyperuricemia**).
- What is difference between uric acid and urate crystal?
- Which part of body especially get affected due to hyperuricemia?
- What type of food ingestion can cause hyperuricemia?
- Which type of condition can increase purine degradation and increase serum uric acid level?
- Which type of condition can decrease excretion of uric acid, which makes increase serum uric acid level?
- What is role of Allopurinol to correct hyperuricemia?

If a section of DNA has 13% thymine and 37% guanine, then there is _____
adenine.

13%

26%

37%

574%

The percentage of A + G equals _____.

26 %

50%

\$0 %

100 %

The sequence of one strand of DNA is 5' TCGATC 3'. The sequence of the complementary strand would be

- **⇒** 5' AGCTAG 3'
- **⇒** 5' CTAGCT 3'
- ⇒ 5' GCTAGC 3'
- ⇒ 5' GATCGA 3'

- DNA has antiparallel two nucleotide chain, which is held together by
 - phosphodiester bond.
 - hydrogen bond.
 - N-glycosidic bond
 - O-glycosidic bond

- All of Following, which has similar structure like purine and use drug for treatment of gouty arthiritis,
 - Hypoxanthine
 - Xanthine
 - Uric acid
 - Allopurinol

- Adenosine deaminase deficiency cause, except
 - increase uric acid level
 - increase of adenosine
 - increase of d-ATP
 - All of above

- Uric acid is breakdown product of purine base.
- So Which of following condition can increase uric acid level
 - chemotherapy
 - radiotherapy
 - leukemia
 - All of above

- Mitochondrial DNA is , except
 - circular
 - maternal inheritance
 - very lengthy
 - very large in amount

- What is incorrect about Histone?
 - Positive charged & base in nature
 - Contain abundant arginine & lysine
 - Help in condensation of DNA
 - All are cylindrical in shape

- Euchromatine part of chromosome is
 - » highly condense with nucleosome
 - **>>** active transcription gene
 - seen darkly stained in electronmicroscopy
 - **& All of Above**