<u>ACID - BASE BALANCE</u> <u>And</u> <u>it 's Disorders</u>

Dr Piyush Tailor

Associate Professor Department of Biochemistyr Govt. Medical College Surat

<u>рН</u>

- > pH = -log (H+)
- ➤ Acidity depends on Hydrogen ion concentration.
- ►Lower the pH = Higher Hydrogen
- ≻Higher the pH = Lower Hydrogen.
- ►Normal pH of plasma = 7.38 to 7.42
- >>At the pH of 7.4 = 40 nanomoles/litre.

ACID

- **<u>Release hydrogen ions</u>** in solutions.
- Donate protons.
- Strong acids donate Completely – HCL
- Weak acids dissociates incompletely. — H2CO3

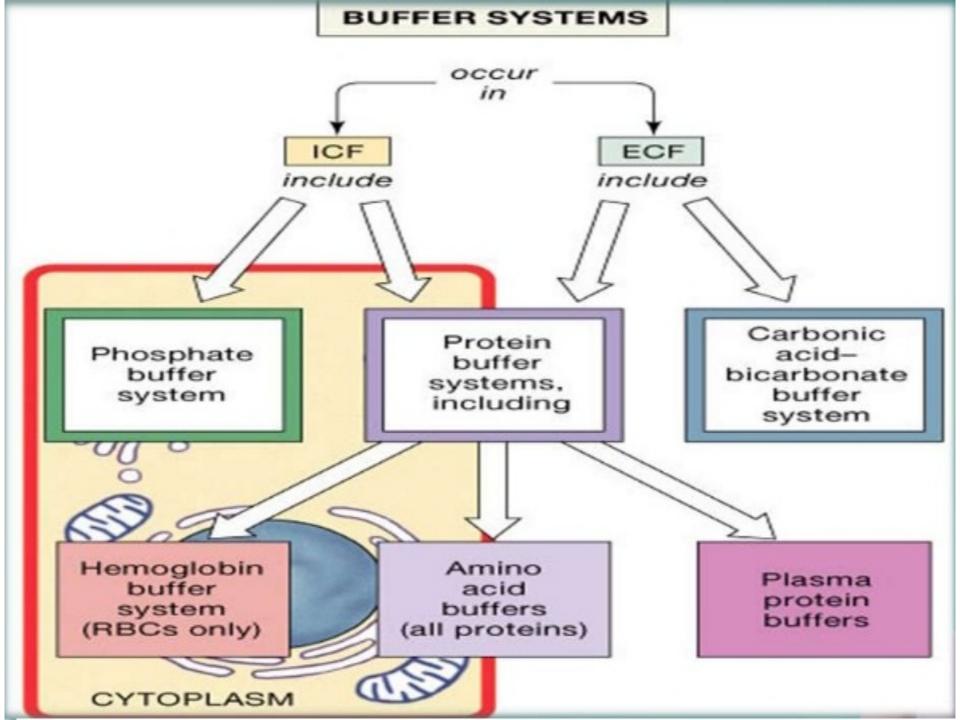
Base

- Accept Hydrogen ions.
 For example, HCO3-.
- Strong Base accept proton Completely . — E.g. NaOH
- Weak acids accept incompletely in solution.
 E.g. NH3

Dissociation Constant (Ka):

- Since the dissociation of an acid is a freely reversible reaction.
- At equilibrium the ratio between dissociated and undissociated particle is a constant.

Henderson-Hasselbalch equation:
pH = pKa + log (Base)
(Acid)


Henderson-Hasselbalch equation Derivation

$$K_{\mathbf{a}} = \frac{[\mathbf{H}^{+}][\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}$$
$$\log_{10} K_{\mathbf{a}} = \log_{10} \left(\frac{[\mathbf{H}^{+}][\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}\right)$$
$$\log_{10} K_{\mathbf{a}} = \log_{10}[\mathbf{H}^{+}] + \log_{10} \left(\frac{[\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}\right)$$
$$-\mathbf{p}K_{\mathbf{a}} = -\mathbf{p}\mathbf{H} + \log_{10} \left(\frac{[\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}\right)$$
$$\mathbf{p}\mathbf{H} = \mathbf{p}K_{\mathbf{a}} + \log_{10} \left(\frac{[\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}\right)$$

- When base (A-) & acid (HA) are same in concentration.
- pH = pKa.

Volatile & Non-Volatile acids

- > During metabolism , acidic ions are produced.
- \succ Added to the ECF.
- \succ This has to be effectively buffered .
- ► Volatile acids
 - ➤ Carbonic acid.
 - > Carbonic acid = Volatile = Eliminated as CO2 by Lung.
- ≻Non Volatile
 - ≻Lactate acid, Keto acids
 - ➤Fixed acid are Buffered
 - > Later , as H+ , they are excreted by kidney

Three Main Way of Acid-Base Balance

1. Blood Buffer Mechanism

- 1. Bicarbonate buffer
- 2. Phosphate buffer
- 3. Protein buffer
- 4. Haemoglobin buffer
- 2. Respiratory Buffer Mechanism
 - 1. Heamoglobin buffer
- 3. Renal Buffer Mechanism
 - 1. H+ excretion / titrable acid excretion
 - 2. HCO3- reabsorption
 - 3. Ammonium ions excretion

Blood Buffer

Buffers are solution which can resist changes in pH when acid or alkali is added.

➤Buffers are of two types:

1. Weak acids + Strong bases.

- H2CO3/NaHCO3 (Bicarbonate Buffer)
- CH3COOH/CH3COONa(acetate Buffer)
- 2. Weak bases + Strong acids.

Distribution of Blood Buffers Systems

- Intra cellular buffers = 58%
 - 52% buffer activity is in tissue cells
 6% in RBCs.

- Extra cellular buffers = 42%
 - In plasma and extarcellular space,
 - 40% by Bicarbonate system
 - 1% by Proteins
 - 1% by Phosphate buffer system.

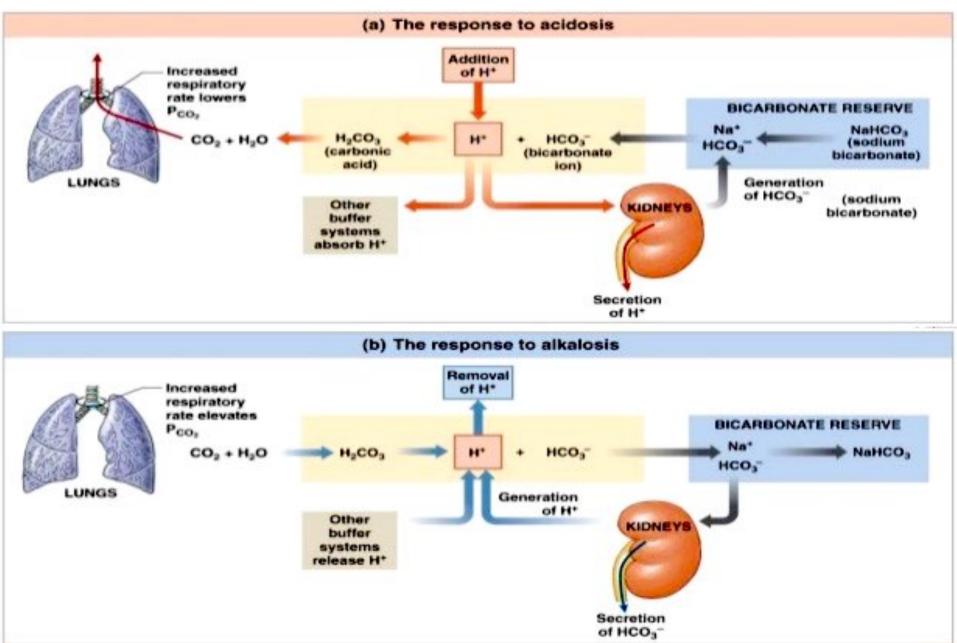
Blood Buffer System

- Fast Acting
- Very Effective
- Not Permanent Only Neutralize acid bas
- 1. <u>Bicarbonate</u>
 - Most important buffer system in the body.

2. Phosphate Buffer system

- It is mainly intracellular buffer.
- Its concentration in plasma is very low.
- HPO4-/H2PO4-

3. Proteins Buffer system


– Many proteins, not only albumin.

4. <u>Haemoglobin Buffer system</u>

Bicarbonate Buffer

- H2CO3/NaHCO3 (Weak Acid / Strong Base)
- pK value = 6.1
- At pH = 7.4 ,
- H2CO3:NaHCO3 = 1:20
- High Concentration
- So Effective buffering capacity

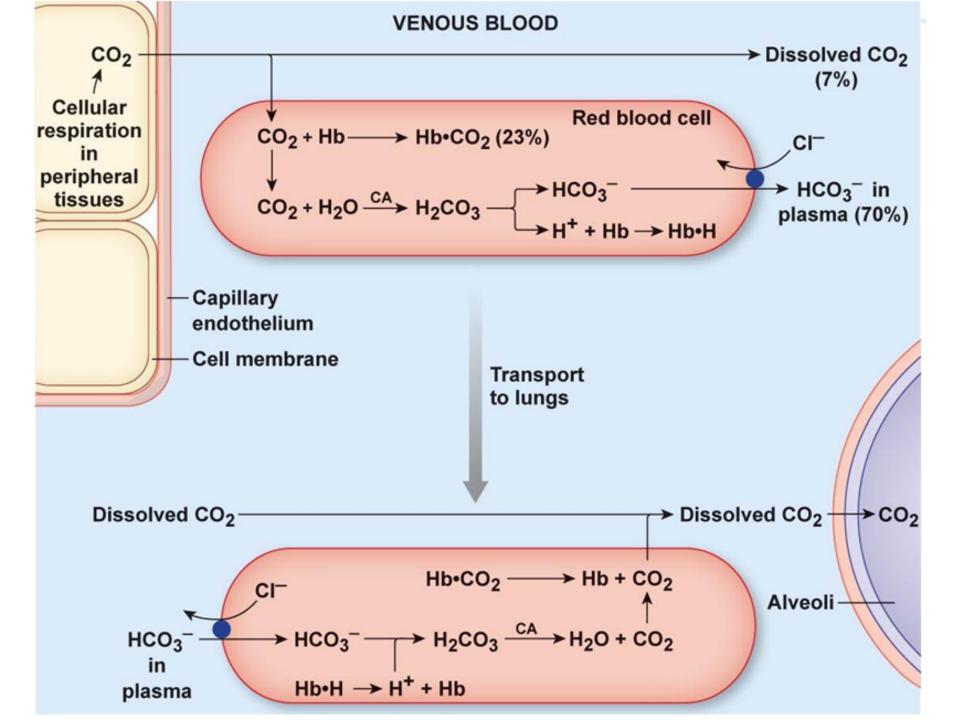
Bicarbonate Blood Buffer

Phosphate Blood Buffer

- NaH₂PO₄ / Na₂HPO₄ (Strong Acid / Weak Base)
- pK value = 6.8
- At pH = 7.4 ,
- NaH₂PO₄ / Na₂HPO₄ = 1:4 Ratio
- Low Concentration
- Less effective buffering

Phosphate Blood Buffer

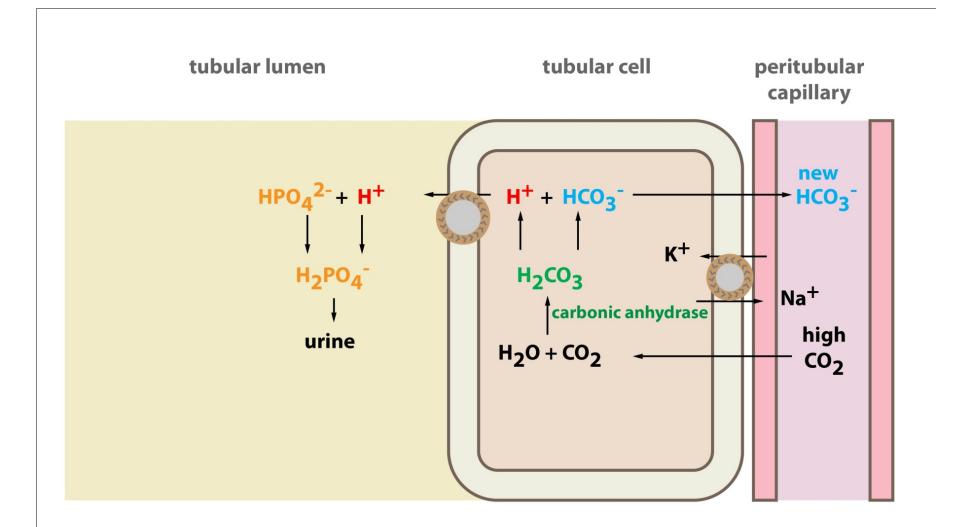
- When Acidosis
- Increase H+

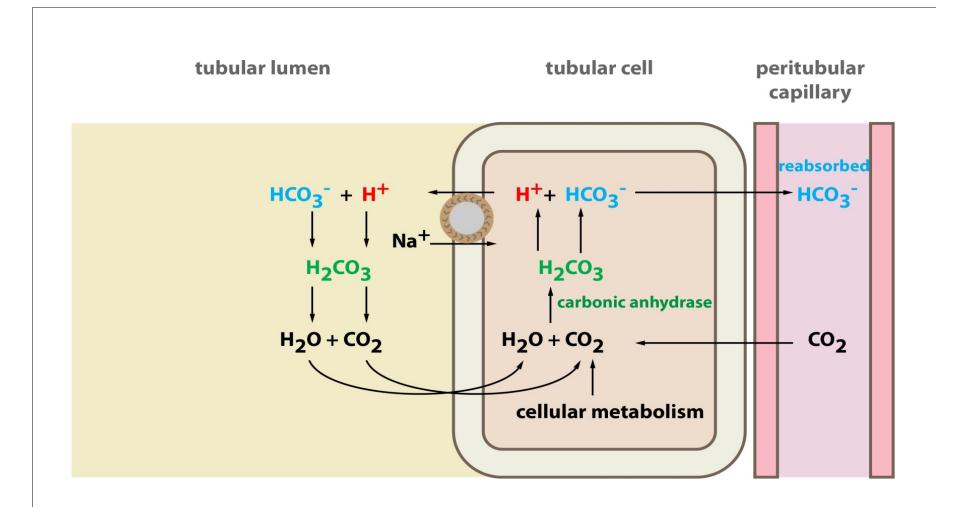

$H_2PO_4 \iff H^+ + HPO_4$

- When Alkalosis
- Decrease H+

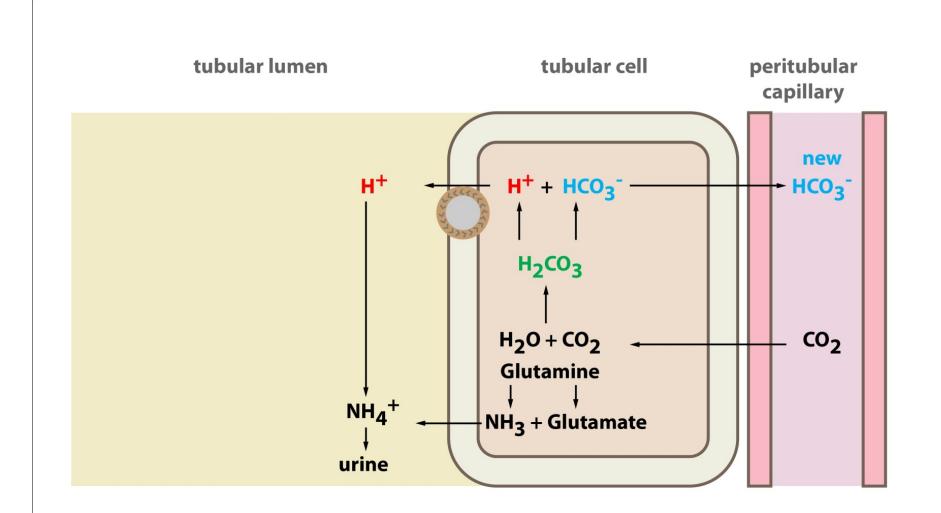
$H_2PO_4 = H^+ + HPO_4^-;$

Haemoglobin Buffer (Respiratory Buffer System)


- With carriage of O2 & CO2 transport, also play as buffer.
- Deoxygenated haemoglobin has the strongest affinity for both CO2 and H+
- Thus, buffering effect is strongest in the tissues.
- Carbon dioxide then either combines
 - Directly with haemoglobin =
 Carbaminohaemoglobin.
 - Water to form carbonic acid.


Renal Buffer System

- Long term balance
- Permanent Excretion of Acid-Base
- Through following mechanism
 - 1. H+ excretion / titrable acid excretion
 - 2. HCO3- reabsorption
 - 3. Ammonium ions excretion


1. H+ Excretion

2. Reabsorption of HCO3-

3. Excretion Ammonium Ions

Arterial Blood Gas (ABG)Analysis

METHOD of Sample collection:-

- Arterial samples is collected from Radial or Femoral artery.
- Collected in Heparin containing vial
- And transported immediately to laboratory.
- Avoid expose to atmospheric air

Use of ABG :-

- detection of hypoxemia and hypercapnia
- management of respiratory failure
- care of the ventilated patient
- detection of abnormalities of acid base balance

	Parameter of ABG	Physiological Range	Pathological
1	рН	7.35 to 7.45	< 7.35 = Acidosis >7.45 = Alkalosis
2	SpO2	90 – 100 %	
3	pO2	95 – 100 mmHg	< 80% = Hypoxia
4	pCO2	32 – 44 mmHg	< 32= Respiratory alkalosis > 44 = Respiratory acidosis
5	HCO3-	22 – 26 mmol/L	< 22 = Metabolic acidosis > 26 = Metabolic alkalosis
6	Base Excess	-2.0 to +2.0 mmol/l	

		рН (7.35 – 7.45)	pO2 (95 - 100)	pCO2 (32 - 44)	HCO3- (22 - 26)
Metabolic acidosis	Uncompensated	Low	Normal	Normal	Low
	Partially compensated	Low	Normal	Low	Low
	Fully compensated	7.35	Normal	Low	Low
	Uncompensated	High	Normal	Normal	High
Metabolic Alkalosis	Partially compensated	High	Normal	High	High
	Fully compensated	7.45	Normal	High	High
	Uncompensated	Low	Normal/ Low	High	Normal
Respiratory Acidosis	Partially compensated	Low	Normal/Low	High	High
	Fully compensated	7.35	Normal/Low	High	High
	Uncompensated	High	High / Normal /Low	Low	Normal
Respiratory Alkalosis	Partially compensated	High	High / Normal /Low	Low	Low
	Fully compensated	7.45	High / Normal /Low	Low	Low

Respiratory Acidosis

 \succ Due to retention of CO2

<u>Causes</u>

- Brochopneumonia
- COPD
- Bronchial Asthma
- Morphine poisoning Causing respiratory center depression
- Interstitial lung disease
- Central nervous system lesion

Respiratory Alkalosis

> Due to Excessive CO2 wash out

Causes :

- Hysterical attacks.
- Exercise
- High Grade fever.
- Hepatic coma.
- Thyrotoxicosis
- Pulmonary hypertention
- Pulmonary embolism

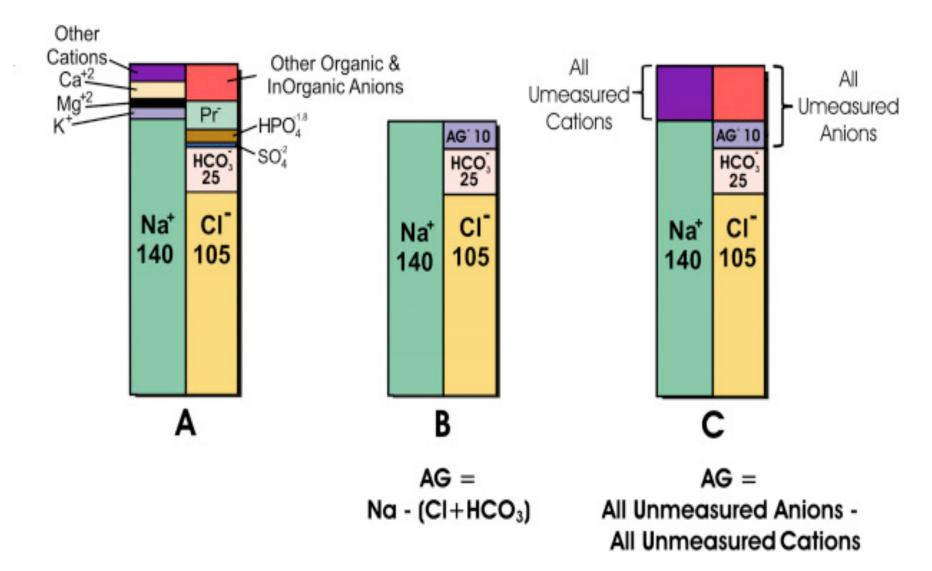
Metabolic Acidosis

- Due to Excessive H+ (organic acid) production
- Due to HCO- (base)Excretion

<u>Causes</u>

- 1. Hypovoluemic Cardiogenic Shock
- 2. Ischemic disease
- 3. Diabetic Ketoacidosis
- 4. Starvation Ketoacidosis
- 5. Salicylate Methanol Poisoning
- 6. Severe Diarrhea
- 7. Enterostomy drainage
- 8. Renal tubular acidosis
- 9. Adrenal Insufficiency

Metabolic Alkalosis


- Due to HCO- (base) production / Ingestion
- Due to Excessive H+ (organic acid) excretion

<u>Causes</u>

- Ingestion of alkali such as bicarbonate
- Prolonged vomiting
 - Pyloric stenosis
 - Intestinal obstruction
- Diuretic therapy
- Cushing syndrome
- Primary aldosteronism

Anion Gap

- Always in ECF
 - Conc. Of Cations = Conc. of Anions.
 - to maintain the electrical neutrality.
- Measurable Cation = Sodium + Potassium = 95% of Cations.
- Measurable Anion = Chloride + Bicarbonate = 86% of Anions.
- So, Difference between Measured Cations & Anions.
- Unmeasured Anions = Anion Gap
- Due to presence of protein anions , sulfate, phosphate & organic acids.

Anion Gap = [Na+] + [K+] – [Cl-] – [HCO3-] = 10 to 20 mmol/L

Type of Anion Gap

- 1. High Anion Gap Acidosis.
- 2. Normal Anion Gap acidosis.
- 3. Low Anion Gap

High Anion Gap Acidosis

≻Renal Failure

- ➤ Decrease excretion of H+
- > Decrease re-absorption of HCO3-
- ➤Diabetic ketoacidosis
- ≻Alcohol abuse
- ≻Lactic acidosis
 - ≻Tissue Hypoxia
 - ➤Circulatory failure
- ➤ Methanol Salicylate Poisoning

Normal Anion Gap Acidosis

- Severe Diarrhea
 - (Hyperchloremic Acidosis)
- Acetazolamide (Carbonic anhdrase inhibitor)
- Uretero-enteric fistula

Low Anion Gap

- Hypoalbunemia
- Multiple myeloma